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1 Introduction

To illustrate the how one may implement a lattice-gas with long-range in-
teractions, let us consider for simplicity a two-dimensional example with a
system having only one interaction range and consider only an attractive
interaction. The more general case of multiple interaction ranges with both
repulsive and attractive interactions and in higher dimensions will follow
directly. Specifically, we discuss our new molecular dynamics lattice-gas al-
gorithm that uses eight interaction ranges and both repulsive and attractive
interactions to approximate a Lenard-Jones intermolecular potential.

A long-range lattice-gas has been implemented on the MIT cellular au-
tomata machine prototype, the CAM-8. Consequently, first the CAM-8 ar-
chitecture is briefly described. Next a brief description of what a lattice-gas
automaton is and explain why it is an exactly computable representation of a
dynamical system is given. One of the principal requirements for a lattice-gas
with microscopic finite-point group symmetry to give rise to macroscopic con-
tinuous rotational symmetry is that the underlying lattice must be isotropic.
Therefore I describe what it means for a lattice to be isotropic. Working in
two dimensions is much easier than working in three, both for implement-
ing computer models and for describing them. For this reason I present the
long-range lattice-gas algorithm in two dimensions on the triangular lattice.

When introduced to the triangular lattice-gas model for the first time,

one inevitably asks the following question: Why does discrete dynamics fail
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to reproduce the correct continuum hvdrodynamic limit when implemented
on a square lattice? One finds that four momentum states are insufficient
by noting that the derivation of the Navier-Stokes equation relies on the
expansion of the momentum flux density tensor in terms of the isotropic
tensor E4. In turn the E* tensor could be expanded in products of two
dimensional Kronecker deltas, given below in Eq. (10). For the square lattice
case, the lattice vectors are orthogonal and E* cannot be decomposed into

two-dimensional Kronecker deltas. Instead
Eflp=4 = 26:u

where 6;, is a four dimensional Kronecker delta, illustrating the lack of
isotropy of the momentum flux density on a square lattice-gas. Since five
nearest neighbors are not space filling, the next possible choice is six or the
triangular lattice. The simplest discrete dynamics in two dimensions is known
as a hexagonal lattice-gas or an FHP lattice-gas, after its originators Uriel
Frisch, Brosl Hasslacher, and Yves Pomeau [1]. Since the long-range lattice-
gas still retains local collisions, the simple FHP model is presented here for
completeness. Next we examine the long-range 2-body interaction, restricting
ourselves to central-body attractive interactions, for the sake of simplicity.
Two different bound states, the bounce-back orbit and the clockwise orbit
are discussed. |

When implementing lattice-gas algorithms it 1s often useful try to find

economical ways of expressing the collisions or interactions, to reduce the
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size of a look-up table or reduce the depth of the logical representation of the
algorithm. To this end I briefly discuss some symmetries inherent in long-
range interactions, in particular I introduce parity and conjugation symme-
tries. Finally, I discuss the implementation of a multi-long-range lattice-gas.
Remarkably, this methodology allows us to model solid-state dynamics and
as such offers an alternative to the usual methbd of computational molecular

dynamics.

2 The Cellular Automata Machine CAM-8

The cellular automata machine CAM-8 architecture devised by Norman
Margolus of the MIT Laboratory for Computer Science [2, 3] is the latest in a
line of cellular automata machines developed by the Information Mechanics
Group at MIT [4, 5, 6]. It is optimized for performing lattice-gas simulations.
The CAM-8 architecture itself is a simple abstraction of lattice gas dynamics.
Lattice gas data streaming and collisions are directly implemented in the
architecture. The communication network is a cartesian three dimensional
mesh. Crystallographic lattice geometries can be directly embedded into the
CAMS-8. Each site of the lattice has a certain number of bits (a multiple of
16) which we refer to as a “cell”. Each bit of the cell, or equivalently each
bit plane of the lattice, can be translated through the lattice in any arbitrary
direction. The translation vectors for the bit planes are termed “kicks”. The

specification of the x,y, and z components of the kicks for each bit plane (or




Figure 1: MIT Laboratory for Computer Science Cellular Automata Machine
CAMS-8. This 8 module prototype can evolve a D-dimensional cellular space
with 32 million sites where each site has 16 bits of data with a site update

rate of 200 million per second.
hyperplane) exactly defines the lattice. The kicks can be changed during the
simulation. Thus, the data movement in the CAM-8 is general. Once the
kicks are specified, the coding of the lattice-gas streaming is completed. In
effect, the kicks determine all the global permutations of the data.

Every configuration of the local data within a cell is an element of an
equivalence class having a particular value of the conserved quantities of
the dynamics. Local permutations of data in an equivalence class occur

within the cells. These local permutations are the computational metaphor




for physical conservative collisions between particles.! All local permuta-
tions are implemented in look-up tables. That is, all possible physical events
with a certain input configuration and a certain output configuration are
precomputed and stored in SRAM, for fast table look-up. The width of the
CAMS-8 look-up tables are limited to 16-bits, or 64K entries. This is a rea-
sonable width, satisfying the opposing considerations of model complexity
versus memory size limitations for the SRAM. Site permutations of data
wider than 16-bits must be implemented in several successive table look-up
passes. Since the look-up tables are double buffered, a scan of the space can
be performed while a new look-up table is loaded for the next scan.

Figure 2 is a schematic diagram of a CAM-8 system. On the left is a
single hardware module—the elementary “chunk” of the architecture. On the
right is an indefinitely extendable array of modules (drawn for convenience
as two-dimensional, the array is normally three-dimensional). A uniform
spatial calculation is divided up evenly among these modules, with each
module able to simulate a volume containing millions of fine-grained spatial
sites in a sequential fashion. In the diagram, the solid lines between modules
indicate a local mesh interconnection. These wires are used for spatial data
movements. There is also a tree network (not shown) connecting all modules

to the front-end host, a SPARCstation with a custom SBus interface card.

1The CAM.-8 is not limited to performing only local permutations; it can do general
mappings. However, since we are interested only in particle conserving reversible dynamics,
local permutations are sufficient.
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Figure 2: CAM-8 System Diagram. (a) A single processing node, with
DRAM site data flowing through a SRAM lookup table and back into DRAM.
(b) Spatial array of CAM-8 nodes, with nearest-neighbor (mesh) interconnect
(1 wire/bit-slice in each direction).

This SPARCstation controls the CAM-8. It downloads a bit-mapped pattern
as the initial condition for the simulations. It also sends a “step-list” to the
CAM-8 to specify the sequence of kicks and scans that evolve the lattice-
gas in time. One can view the lattice-gas simulation in real-time since a
custom video module captures site data for display on a VGA monitor, a
useful feature for lattice-gas algorithm development, test and evaluation. The
CAMS-8 has built-in 25-bit event counters allowing real-time measurements
without slowing the lattice-gas evolution. This feature is used to do real-

time coarse-grain block averaging of the lattice-gas number variables and

to compute the components of the momentum vectors for each block. The




amount of coarse-grained data is sufficiently small to be transferred back to
the front-end host for graphical display as an evolving flow field within an

X-window.

3 Lattice-Gas Automaton: An Exactly Com-
putable Dynamical System

A Boolean formulation of an exactly computable dynamical system, known
as a lattice-gas, may be stated in a way that is consistent with the Boltzmann
equation for kinetic transport. In essence the lattice-gas dynamics are a sim-
plified form of molecular transport as we restrict ourselves to a cellular phase
space. The macroscopic equations, in particular the continuity equation and
the Navier-Stokes equation, are obtained by coarse-graining over a discrete
microdynamical transport equation for a number of Boolean variables. The
scheme employs the finite-point group symmetry of a crystallographic spatial
lattice. It is somewhat inevitable that to obtain an exactly computable rep-
resentation of fluid dynamics one must perform a statistical treatment over
discrete number variables.

Before the basic lattice-gas microdynamical transport equation is intro-
duced, some notational conventions are needed. Consider a spatial lattice
with N total sites. The fundamental unit of length is the size of a lattice
cell, I, and the fundamental unit of time, 7, is the time it takes for a speed-one

particle to go from one lattice site to a nearest neighboring site. Particles,




with unit mass m, propagate on the lattice. The unit lattice propagation
speed is denoted by ¢ = é Particles occupy this discrete space and can
have only a finite number B of possible momenta. The lattice vectors are
denoted by e,; where a = 1,2, ..., B. For example, for a single-speed gas on
a triangular lattice, a = 1,2,...,6. A particle’s state is completely specified
at some time, ¢, by specifying its position on the lattice, z;, and its momen-
tum, p; = mcey, at that position. The particles obey Pauli exclusion since
only one particle can occupy a single momentum state at a time. The total
number of configurations per site is 2B The total number of possible single

particle momentum states available in the system is N = BN. With P

P
-”\'rtotal :

particles in the system, denote the filling fraction by d =

The number variable, denoted by n,(x,t), takes the value of one if a
particle exists at site X at time ¢ in momentum state mc &,, and takes the
value of zero otherwise. The evolution of the lattice-gas can then be written
in terms of 1, as a two-part process: a collision part and a streaming part.

The collision part reorders the particles locally at each site.
ny (X, 1) = na(x,) + Qa(i(x, 1)), (1)

where (), represents the collision operator and in general depends on all the
particles, 7 at the site. So as a shorthand suppress the index on the occupa-
tion variable when it is an argument of €,[f(x,t)] to represent this general
dependence. In the streaming part of the evolution the particle at position

x “hops” to its neighboring site at x + [&, and then time is incremented by
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=

n! (x4 18a,t +7) = na(x,t) + Q[fi(x,1)]. (2)

Equation (2) is the lattice-gas microdynamical transport equation of motion.
The collision operator can only permute the particles locally on the site

since we wish the local particle number to be conserved before and after the

collision. That is,

= S (x,8) = Y nalx,1). (3)

Equation (3) defines the local number density. Summing Eq. (2) over lattice

directions then implies the constraint on the collision operator,
S0, =0. (4)
We may define the local momentum as
= mc Z eailly (X, 1) = mc Z €aila(X, 1), (5)

which of course must also be conserved before and after a collision. Again,

this imposes a constraint on the collision operator.
> el =0. (6)
a

As a matter of notation it should be understood that whenever a directionally
dependent quantity is written, its subscripted index is taken modulo B. Using

the number variable, for example, it is understood that

Na+b = Mmodp(a+b)- (7)

9




As a shorthand, a negative index will represent the antiparallel direction, so

since €,, 8 = —&, we may write
2

Mg =gy B (8)
4 Isotropic Lattice Tensors

We construct an n'* rank tensor composed of a product of lattice vectors [7]
E(n) = Ei1~--in = Z(ea)il T (ea)iuv (9)

where a = 1,...,B. All odd rank E vanish. We wish to express E@n in
terms of Kronecker deltas, &;; = 1 for ¢ = 7 and zero otherwise. We can turn
this problem of expressing the E-tensors in terms of products of Kronecker

deltas into a problem of combinatoric counting. We use the following tensors:

A?] = (52']' (10)
Al = 050w + 6ik0j1 + Sud; (11)

and so forth. Then we know that if F is isotropic it must be proportional to
A, therefore

E® oc AGY (12)
and that the constant of proportionality may be obtained by counting the
number of ways we could write a term comprising a product of n Knonecker
deltas. Consider for example the case n = 2. Since the Knonecker delta is

symmetric in its indices, the following four products are identical: 6;;0n =

10




850 = 050 = §;:01. The degeneracy is 92 Furthermore, the order of the
Kronecker deltas also doesn’t matter since they commute; that is, 0;;0m =
Sri0;;. The degeneracy is 2!. For the case where n is arbitrary, there are
97 identical ways of writing the product of n Kronecker deltas. For each
choice of indices, there are an additional n! number of ways of ordering the
products. Therefore, the total number of degeneracies equals 2"n! = (2n)!!.
The total number of permutations for 2n indices equals (2n)!. So from this
(2nl) _

counting procedure we know that A®@) consists of a sum of G55 = (2n—1)!

terms.

The following relations will be very useful throughout later developments

E' =0 (13)

E2 - %(51']' (14)

E} =0 (15)

B = D (6,60 + Subs + bl (16)
D(D+2) Y w T

In general, the lattice tensors are

EH =0 (17)

B
E2n — 2n
D73 - Dtzn-2" (18)
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5 Triangular Lattice

In a triangular lattice there are six vectors, enumerated in this section by the

convention

3 3

where a = 1,2,...,6. The spatial coordinates of the lattice sites may be

. Ta . Ta
€y = |cos—,—sin— |, (19)

(1,8) % === @) === 3,50~ (A5)es === (5, S—T
y . . . -

4 y---- @A)y B -nm- (4 (G Ap—

a=1 .~ a=2 )
o L /' ":' "' K .
a=6 /,},\‘ - a=3 R (R U (5.3 ;
a=5 “"a=4 i (1,2 y-=-= 22p-=-= 3 2)o- === (A2)p----- (52

, . D
R S ’ , ’
. 0 0 »

1) - ~(1,2)en e (1,3)£'---- (1,4)&"-- w158
y
=
X m————— i
(a) (b)
Figure 3: Triangular Lattice Convention: (a) Lattice vector label convention;

(b) Triangular lattice convention with lattice directions a = 3upand a =6
down. Coordinates above the lattice nodes are (7, j) memory array indices.

expressed as follows
1, 3.
= (i 30 mod ), 3[_7) (20)
2 2
where ¢ and j are rectilinear indices that specify the data memory array
location used to store the lattice-gas site data.
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Let s = (j mod 2)(r mod 2). Given a particle at site (¢,7), it may be

shifted to a site 7 lattice units away to a remote site (¢, ') by the mapping

@in = (i+5-si-r) 21)
Wi = (i-5-si=r) 22)
(7% = (=) 23)
W = (i-5-si+) (24)
@) = (i+53=—si+r) 29)
@i = (i+nd) (26)

where (i, 7'), denotes the shifted site, that is, (z,7) = (7,j") with a shift

along vector T = r&, and where division by 2 is considered integer division.

6 Local Collision Rules

In two dimensions we may use a triangular lattice, with six bits per site
encoding the occupation numbers of the six possible momentum states. Let
n, be the input bits and n, be the output bits of a local collision. A general

collision operator is constructed as follows

Qe = ZaQa({Ci})> (27)

{G}
where {(;} is a set of occupied particle states, a = +1is a scalar coefficient,

and where each term in the sum is written in factorized form as

Matiy ety ﬁ(l — Ngas) (28)
1-— Ng+iy 1-— Na+iy, j=1 ot

Qa(ilr . 'aik) =

13




Table 1: Simple Right-Handed Collision Table

/ ! !/

ng My Mo M3 My Nz My My My My My ng
1 0 0o 1 o0 o]0 0 1 0 0 1
o 1 0 0 1 o1 O 0 1 0 O
o o0 1 o o 10 1 0O 0 1 O
1 0o 1 0 1 010 1 0 1 0 1
o 1 0 1 o0 141 0o 1 0 1 O

Then the FHP collision operator is the following:
1 1
QoA = §Qa(1,4) + 5(%(2, 5) — Q4(0,3) + Qo(1,3,5) — Qa(0,2,4) (29)

or for a = 0 this is explicitly

QO = %nlm(l — n())(l — 7’7,2)(1 — ng)(l —_ TL5) +
%n2n5(1 d n())(l —_ nl)(l - n3)(1 — 77,4) it

71()723(1 - nl)(l - TLQ)(l - TL4)(1 - 715) -+
n1n3n5(1 — no)(l - TZQ)(]. — TL4) —

n0n2n4(1 - nl)(l e m)(l — TL5>.

Note that it is sufficient to give only g since the other components of the
collision operator can be obtained simply by incrementing the indices of {2
owing to the six-fold symmetry of the collisions. The factors of one-half in
Eq. (29) are transition probabilities for the 2-body collisions, indicating a

coin toss is performed to choose between even or odd chirality.
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Table 2: Simple Left-Handed Collision Table

no N, Ma N3 Mg N5 | My ny nh my my ng
1 0 0 t 0O O0Of0 1 0 O 1 O
o 1 0 0 1 00 0 1 0 0 1
o 0 1 0 o0 1|1 o 0 1 0 O
i1 0 1 0 1 o040 1 0 1 0 1
o 1 0 1 0 11 0 1 0 1 O
// 100100->001001 * : ,/ 100100->010010\
\\ 010010->100100 // ; \\ 010010-> 001001 *
* } 001001->010010 \\ E * 001001->100100 ,/
Even Chirality Odd Chirality

¥ 101010->010101 N
P 4

. ¥
\f/ 010101->101010 Y

Figure 4: FHP Collision Rules. Enumeration of FHP 2-body collisions, even
and odd chirality, and 3-body collisions.

The possible two-body and three-body collisions represented by Eq. (29)
are illustrated in Figure 4. For two-dimensional flow, there are four invari-
ants, the mass, two components of the momentum, and the energy. With
only the 2-body collision in Figure 4, there is an additional invariant: the
difference in the particle number along each of the three lattice directions.
The 3-body collisions in Figure 4 were include in the FHP-model to remove

this spurious invariant. Consequently, the collisions enumerated in Figure 4

15




are the minimally sufficient set to produce hydrodynamic behavior in the

continuum limit.

7 Long-Range 2-Body Interactions

An interparticle potential, V(x — x'), acts on particles spatially separated
by a fixed distance, x —x' = r. An effective interparticle force is caused
by a non-local exchange of momentum. Momentum conservation is violated

locally, vet it is exactly conserved in the global dynamics.

~AO0Y

i H H H i t
RN NP Y Ve e

(a) (b) (©)

Figure 5: Bounce-Back and Clockwise Bound States. Simple bound-state
orbits due to a long-range attractive interaction where the dotted path in-
dicates the particle’s closed trajectory: (a) partition directions; (b) bounce-
back orbit with |Ap| = 2 and zero angular momentum; and (c) clockwise
orbit with |Ap| = 1 and one unit of angular momentum. Head of the dashed
arrows indicates particles entering the sites of partition ro at time t. Tail of
the black arrows indicates particles leaving those sites at time t + 7. The
counter-clockwise orbit is not shown.

For an attractive interaction, there exists bound states in which two par-

ticles orbit one another. Since the particle dynamics are constrained by a
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Table 3: Lattice Vector Components

a X-component y-component

0 -1 0
_1 V3
7 %
2 3 3
3 1 0
¢ -4
= 1 V3
0 3 — 2

crystallographic lattice we expect polygonal orbits. In Figure 5 we have
depicted two such orbits for a hexagonal lattice-gas. The range of the in-
teraction is r. Two-body single range attractive interactions are depicted
in Figures 5b and 5c¢, the bounce-back and clockwise orbits respectively.
Momentum exchanges occur along the principal directions. The interaction
potential is not spherically symmetric, but has an angular anisotropy. In
general, it acts only on a finite number of points on a shell of radius 5. The
number of lattice partitions necessary per site is half the lattice coordina-
tion number, since two particles lie on a line. Though microscopically the
potential is anisotropic, in the continuum limit obtained after coarse-grain

averaging, numerical simulation indicates isotropy is recovered.

8 A Simple Example: Bounce-Back Orbit

A long-range lattice-gas of the type we are considering still possesses the

usual local dynamics of a hydrodynamic lattice-gas. To extend the local
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lattice-gas update rules to include long-range interactions, we use two addi-
tional bits of local site data. This will allow us to implement a long-range
interaction using strictly local updating and therefore the algorithm remains
“embarrassingly” parallel just as a usual local lattice-gas. The two addi-
tional bits will denote the occupation numbers of messenger particles, or
“photons”. The idea of using messenger particles was introduced by Appert
et al.[8]. We have two types of messenger states, to represent incoming and
outgoing conditions, and we denote the messengers as z and z,.

For the simplest long-range lattice-gas model, we therefore use eight bits
of local site data. Since long-range interactions occur between remote spa-
tial sites, say & and ', the messenger particles will travel either parallel or
antiparallel to the vector ¥ = Z — &’. All pairs of sites throughout the entire
space that are separated by the vector 7 can therefore all be updated in paral-
lel. We refer an update step of all pairs of 2-body interactions along direction
7 as a partition, denoted by T',. All possible two-body interaction pairs are
then computed by performing all possible partitions of the space. For this
reason, it requires many scans for the space to perform a single lohg-range
interaction step.

In our two-dimensional example using a triangular lattice, there are three
possible partitions. The number of partitions is never smaller than half the
lattice coordination number. In the two-dimensional case, the simplest long-

range lattice-gas algorithm, though perhaps not the most efficient algorithm,
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is to use three sequential scans of the space, each scan performing the up-
dating necessary for a single partition. See Figure 5a. Often, depending on
the complexity of the long-range interactions and the dimensionality of the
lattice, it is possible to perform simultaneous updating of multiple partitions.
This of course is more desirable, vet it causes more complexity. Furthermore,
this updating requires an extra pair of messenger particles for each partition
to be simultaneously updated. For simplicity, we will not deal with this case
here, however our implementation on the CAM-8 does use simultaneous par-
tition updating—repulsive and attractive partitions are performed in parallel
using four messenger bits.

Let us consider a simple example of the long-range lattice-gas algorithm,
the minimal model of Appert. Here we consider only bounce-back attractive
interactions. Suppose there is a single particle at site ¥ = 0 and there is also
a single particle at site ¥’ = ri; that is, no(Z) = 1, n3(Z) = 0, ne(Z') = 0
and n3(Z) = 1 with all other bits at Z and Z’ being zero. See Figure 5b for
a diagram of this situation. Here we are using the bit convention shown in
table 3. Then the two particles are separated by a distance r and are moving
away from each other. The attractive long-range interaction will effectively
flip their respective directions making no(Z) =0, n3(Z) =1, no(&') =1 and
n3(Z) = 0 so that the two particles will now be moving toward each other.
There is a local momentum change of 2mei at 7 and an opposite momentum

change of —2mci at . Locally momentum is not conserved, but nonlocally
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it is.

The first step of the long-range interaction sequence is to choose a parti-
tion, say I, and then to emit messenger particles along the partition axis.
The basic local rule for this first step is the following: a photon is emitted at
a site if there exists a particle at that site that can partake in a long-range
interaction. Another way of expressing this rule is: send only if you can
receive. QObviously, for a particle to partake in an interaction there must be
both a particle and a hole at that site. The factorized probability of having
such a situation is just d(1 — d). So to continue with our example, for a
photon to be emitted at some site T parallel or antiparallel to a partition

direction 1, we use the following rule
7(Z) = no(Z)(1 —na(3)) (30)
2(Z) = na(@)(1 — ne(d)). (31)

Note that according to this local rule, only one photon can be created at a
site, and consequently we eliminate the possibility of a long-range interaction,
say of range 2r, mediated through a doubly occupied site. For two sites
separated by the interaction distance r, the important consequence of the
emission step is that if both sites send photons, both will necessarily receive
them, which strictly enforces nonlocal momentum conservation. Give and ye
shall receive (provided yours is received). Letting z, = 2, and z2_, = 2, In

general we can write the emission step of the minimal interaction as
2a(%) = n-a(@)(1 — 1a(7)), (32)
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where ¢ = 0, 1,2 covers all the partitions.
After the emission step, a long-range kick of the messenger bits follows.
In the simple example, all photons z; are kicked along —ri and all photons

2, are kicked along ri. In general for the long-range kick we have
2 (Z+ré,) = 2,(%). (33)

Finally, we have the absorption step of the long-range interaction sequence.
Here the local particle momentum state is updated as the particles flip their

directions in our example
ny(F) = na(@) +2(@)no(2)(1 = na(%)) — 7(E)ns(2)(1 — no(3))
(34)

no(Z) + 2 (E)na() (1 = no(7)) — 21(F)no(Z) (1 — na(Z))-

3
(=]

8
~—~

Il

(35)

Moreover, in this step all the messenger bits are set to zero throughout the
entire space. For any direction, the local absorption rule could be written

more simply as
(%) = 1a(E) + 2L,4(%)2a(E) — 20(8)2-a(2). (36)

Substituting in Eqs. (32) and (33) into Eq. (36), we have a single Boolean
expression in terms of number variables for a single long-range interaction

step for partition I', as follows
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Table 4: Long-range Interaction Sequence

events | na(z) 2(z) z(x) | na(z) (@) 2 (z)
initial | 100000 O 0 000100 O 0
emit 100000 O 1 000100 1 0
kick 100000 1 0 000100 0 1
absorb | 000100 0 0 100000 O 0

No(Z + 764) (1 — n_o(T + 7éa))n—a(F) (1 — na(Z)) -
N—a(Z — 764) (1 — na(F — 7a) )00 (T)(1 — n_q(Z))
(37)
For convenience we define a long-range collision operator, P,, as follows
P,(%) = 2. (%) 2a(E), (38)
so that we may write

n! (%) = na(Z) + Pa(Z) — P_a(®). (39)

a

The state data for this simple example we have been considering are given
in Table 4, which represents all the steps of a long-range interaction sequence

for a partition along the x-axis.

9 Another Example: Clockwise Orbit

To continue illustrating our implementation of a long-range lattice-gas, in

this section we again consider a system with a single attractive interaction of
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range 7, however the local momentum states participating in the interaction
are not along the partition direction. However, in the example given here, the
momentum exchange is still along the partition direction so that the long-
range interaction remains a central-body ome, resulting in a bound state
with two particles trapped in a clockwise orbit. (Note that the restriction to
central-body forces is not necessary, but is presented here for convenience.)
In this slightly more complicated example, the local rules for photon emission
and absorption, Eqs. (32) and (36) respectively, have a more general form
with the implication that the emission and absorption of photons is different
from the previous example of the bounce-back orbit, and the difference should
be noted when making look-up tables to do this computation. The local

photon emission rules can be written

&8

) = ne(Z)(1 - ng(7)) (40)

2-a(T) = ng(Z)(1 - (7)) (41)

2q(

where the bits ¢, d, g, and k must by chosen so momentum is conserved
éc—éd-l-ég—éh:() (42)

as well as be constrained by central-body parallel and perpendicular momen-

tum exchange conditions

(6e—€a—€y+ &) -7 = 2Ap (43)
(6c—éa—8é,+é) xT = 0, (44)

23




where Ap is the momentum change per site due to the long-range interaction.
Equations (40) and (41) differ for Egs. (30) and (31) for the bounce-back
orbit by allowing two photons to be emitted at a single site.

To be explicit, for the two-dimensional triangular lattice, we can satisfy

Egs. (42), (43), and (44) by choosing the indices ¢, d, g, h as follows:

c = a—2 (45)
d = a—1 (46)
g = —c (47)
ho= —d (48)

An example of this choice of indices is illustrated in Figure 5c. Then the

emission rules, Eqgs. (40) and (41), are simply
2a(Z) = Ne—2(Z)[1 = na-1(Z)] (49)

Since the kicking of the photons is the same in this example as in the previous

one, Eq. (33) still holds
(T 4+ Té,) = 2,(T).

By re-expressing Eq. (36) more generally, we can write a local absorption

rule

(%) = na(Z) + 2L (041) (D) 2041(F) — 21 (T)2-(a-1) (%) (50)

nl (%) = ng(Z) + Pay1(L) — P_o1 (). (51)




o Table 5: Long-Range Interaction Sequence with Two Photons Emitted at a
Single Site

events | ng(z) z(z) z(x) | noa) () 2(a')
initial | 010010 O 0 000010 0 0
emit 010010 1 1 000010 1 0
kick 010010 1 0 000010 O 1
absorb | 001010 0 0 000001 O 0

Substituting from Eqgs. (49) and (33) into Eq. (50) and after some manipu-
lation of the indices, we have a single boolean expression in terms of number

variables for a single long-range interaction step for partition I', as follows

—

WE) = n@)+
Nas2(Z + 7eas1)[1 — n_o(Z + Téas1]) a1 (T)[1 — na(T)] —

N_g(Z = 184_1)[1 — Na—a(& — 7é0—1)]7a(Z)[1 — nat1(Z)]-

Table 5 gives the local site data for the x-axis partition of a clockwise
orbit. The particle ny(Z) acts as a kind of spectator is this example, illus-
trating that two photons can be emitted from a single site. It is also possible
to have two photons absorbed at a single site. Let us consider a back-to-
back interaction over three sites. Suppose there are particles at sites ¥ = 0,
# =i, and &’ = 2ri. Table 6 gives the site data for these sites where there
are two photons emitted and absorbed at Z' in the middle location.

The minimal model, using only an attractive interaction, models a fluid

with liquid and gas phases at zero temperature. Figure 6 shows the time
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Table 6: Long-Range Interaction Sequence with Two Photons Emitted and
Absorbed at Site x’ in a Back-to-Back Interaction

events | na(x) z1(z) 2(2) [n(z)  a(@) z(2) | n(z") a@’) 2 (z")
initial | 010000 O 0 010010 O 0 000010 O 0
emit 010000 © 1 010010 1 1 000010 1 0
kick 010000 1 0 010010 1 1 000010 O 1
absorb | 001000 0 0 001001 0 0 000001 O 0

evolution of the phase separation process in this case at a density d = 0.07
and interaction range r = 6/ and illustrates the type of physical simulation

that can be achieved with the simplest long-range lattice-gas algorithm.

26




Ly e -, . .- . 3 .
kot | .
ot P ‘\ : . [ . e ‘.‘ A 1
e~ - p e
el ’qt.,.f.(w-(',‘, M § oo e’ N
#Fal e Tty L % o .
s * Wy LT W C0 et o s o
L SAAEEN (TR P I 2 g o ? ) .
! o & -t . . & Py Y ]
P ™ e ) PR | P ® L
AR LA K| LRI LI S
- qf Jod, #eFt e .. ‘al
.:'!-c‘,,.“’» LI Y ~E e e ..'. ., ¢ L
RIS P R Tyl It ¢, ¢ . .9
LR I A R G A R I e s ** .
[ TR ST A o . YL v
cl e - . - . ®
e T e A ‘.
ST At st e @ S e8 et e g 0 .
koo LR Lt ‘,'-.'-" « '@
» " . & ¢ o,

TR Jolle . ¢

i . . _; Yy e v‘l RS B 1 .

a ';Jf‘ 24 [s00l® @ . .o ... . ()
e Se- [ Y .

°® ° o @ Py o o ¢

5,000 . e @® .| [20.000 L - B

Figure 6: [Liquid-Gas Phase Separation. Time evolution of a liquid-gas phase
separation for a lattice-gas with long range attractive interactions at range
r = 6 on a 1024 x 1024 lattice starting with a uniformly random configuration
of density d = 0.07.




10 Symmetries in Long Range Interactions

For an attractive interaction as mentioned earlier, we would expect that there
exists a bound state in which two particles orbit one another, for example
the clockwise orbit shown in Figure 5¢. The range of the interaction is 7.
This hexagonal orbit is also shown in the bottom right corner of Figure 7.
In this figure the hexagon’s radius is also labeled as r and should not be
confused with the interaction range, that is the hexagon’s diameter. Simlarly
a counter-clockwise orbit is possible. See the top left corner of Figure 7.
A time-reversal invariance exists between these two cases with respect to
conjugation and parity operations, as depicted in Figure 7.

These diagrams describe the possible 2-body collisions that can be so
generated, including repulsive interactions. This logical correspondence be-
tween the different types of 2-body interactions allows one to achieve a more
efficient implementation of a long-range lattice-gas algorithm than what we
have achieved on the CAM-8, since we have not used this form of logical econ-
omy. Furthermore, because there is a correspondence property for r = 0, the
situation reduces to the 2-body collisions in the FHP lattice-gas 2,

The long range interactions considered here have the following properties
that simplify a computational implementation: 1) there exists only parallel

momentum exchange, a restriction for modelling central body forces; 2) the

2For r = 0, the |Ap| = 1 interactions reduce to a rotation of the states, R(%) and

R(Z); and the |Ap| =2 interactions reduce to the identity operation.
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a—af

Figure 7: Long-Range 2-Body Interaction Terms. Examples of two-body
finite impact parameter collisions along the ro-direction. The four terms of
the interaction Hamiltonian are for |Ap| = 1. Input states are depicted by
dashed arrows and output states are by black arrows.
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interaction acts only along the principal lattice directions; 3) there exists
time-reversal invariance with respect conjugation and parity operations; and
4) a bias to the interactions can be assigned by coupling to a heat-bath
reservoir. The previous examples, bounce-back and clockwise orbits, has
been discussed properties 1 and 2. Property 3 has been discussed in this

section. Property 4 has been discussed elsewhere [9].

11 Central-Body Interaction Neighborhood
and 2D Crystallization

In the previous two sections, two examples of the long-range interactions,
the bounce-back and clockwise orbits on a two dimensional triangular lattice
were illustrated . In general, the long-range interaction step will involve many
partitions, both attractive and repulsive interactions, and multiple ranges.
In my CAM-8 implementation of a long-range lattice-gas with central-body
interactions, I use 12 neighbors in two dimensions, as indicated in Figure 8.
The triangular lattice is superposed over a square lattice, which appears
rhomboidal in the figure. The square lattice is often used for embedding the
site data into computer memory, which is rectilinear. This kind of embed-
ding is the simplest and used for simulations that possess periodic boundary
conditions. The reason for using 12 neighbors is to try to achieve a higher
degree of local symmetry. In doing molecular dynamics modeling with a

multi-long-range lattice-gas, we have found that 12 neighbors are necessary
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Figure 8: Twelve Neighbors on a Triangular Lattice that can Participate in
Long-Range Central Body Interactions. Interaction range D = 7 is depicted,
where R = L ~ 4 to within 1.03 percent error. Computer memory space

coordinates E/x— ;/_) are given adjacent to each neighboring site.
to recover macroscopic isotropy. In particular, 12 neighbors are necessary to
have the emergent crystalline solid be able to freely rotate in space. A mean-
field analysis of the lattice-gas crystallization method has been presented
elsewhere [10]. Figure 8 shows a ring of range 7 lattice spacings.

To implement the crystallization algorithm, we use up to eight ranges

in two dimensions, that is, eight rings of the type shown in Figure 8 for

a total of 96 neighbors. Half the rings are used for attractive interactions
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Figure 9: Time Evolution of Crystallization in a Two Dimensional Lattice-
Gas with Multiple Fixed-Range 2-body Interactions. The resulting crystal is
in a hexagonal-close-pack configuration since the coarse-grained interatomic
potential is radially symmetric. The underlying lattice is 512 x 512. Started
with a uniformly random configuration at d = 0.1. Twelve directions are
used for long-range momentum exchanges. Grain boundaries and defects are
observed during the early stages of the crystal formation.
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and the other half are used for repulsive interactions. Typically, the inner
rings are attractive, the middle rings are repulsive, and the outer rings are
again attractive. Since four photon bits are used in our implementation, and
since each ring is either attractive or repulsive, two rings are affected by a
simultaneous partitioning of the space. For the attractive interaction, there
are five types of orbits: bounce-back with Ap = 2, clockwise and counter-
clockwise with Ap = 1, and clockwise and counter-clockwise with Ap = \/§
Consequently, there are five types of repulsive interactions, which are just
the conjugates of the five attractive omes. Since there are three partition
directions for a triangular lattice, it takes 5*3=15 partitions of the space
to completely update an attractive ring and a repulsive ring simultaneously.
To compute 8 rings therefore takes 4*15=60 scans of the space. Therefore,
since the local collisions require a single scan, it takes a total of 61 scans to
complete one time step.

A two dimensional example using six interaction ranges, with an un-
derlying 512 x 512 lattice, of this time-dependent crystallization process is
given in Figure 9 and illustrates the type of molecular dynamics simulation
that can be achieved with a more complex long-range lattice-gas algorithm.
The resulting crystal is in a hexagonal-close-pack configuration since we have
strived to make the coarse-grained interatomic potential be radially symmet-
ric. This long-range lattice-gas model had six interaction ranges: r = —2

—7,19, 21, —24, —26. Here the negative sign preceding the range denotes
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an attractive interaction at that range.

12 Conclusion

It should be noted that although the lattice-gas molecular dynamics algo-
rithm that we have described above requires 61 scans, which is quite a lot of
scans, this implementation only requires 10 bits of local site data (6 bits for
the momentum states and 4 bits for messenger states) which means that only
1 kilobyte is needed to store a long-range rule. Since the CAM-8 uses a 16-bit
word, there still remains 6 bits of unused local data. We use these remaining
bits to hold a table look-up address. That is, since the size of the CAM-8
look-up table static random access memory (SRAM) is 64k bytes, and our
long-range rule only requires 1k bytes, we can store up to 64 long-range rules
into CAM-8’s SRAM memory. Since our molecular dynamics algorithm de-
composes into 61 applications of the long-range rules, it is now clear why
we have chosen to use up to eight ranges. Although the description of our
implementation may sound complicated, in fact from a software development
point-of-view it was the most direct and most simple. We have traded off
time to save memory. Yet the well known principle of computer science that
one can save much time at the expense of using more memory applies to
our algorithm. So optimizations of our algorithm can be made, particularly
concerning trading off an increase of local site data for a decrease in the num-

ber of needed scans. Clearly, the molecular dynamics algorithms would be
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significantly sped up if thet were implemented say on a 64-bit architecture.
Of course in this case, computation by table look-up would be inappropri-
ate. However by making use of lattice isometries and rule conjugation, the
necessary logic is actually quite small, as evidenced for example by Eq. (37)
or (52). Therefore, a programmable logic method of computation should be
better than the table look-up method of computation currently in use in the

CAM-8 for this kind of lattice-gas algorithm.




36




References

[1]

2]

Frisch, U., Hasslacher, B., and Pomeau, Y (1986) Lattice-gas automata

for the navier-stokes equation. Phys. Rev. Lett., 56(14):1505-1508.

Margolus, N. and Toffoli T. (1990) Cellular automata machines. In
Gary D. Doolean, editor, Lattice Gas Methods for Partial Differential
Equations, pages 219-249. Santa Fe Institute, Addison-Wesley Publish-
ing Company. The first 8-module CAM-8 prototype was operational in

the fall of 1992.

Margolus, N. (1993) Cam-8: a computer architecture based on cellular
automata. In Ray Kapral and Anna Lawniczak, editors, Proceedings
of the Pattern Formation and Lattice-Gas Automata NATO Advanced
Research Workshop. Fields Institute for Research in Mathematical Sci-

ences, American Mathematical Society.

[4] Toffoli, T. (1984) Cam: A high-performance cellular-automaton ma-

chine. Physica, 10D:195-204. A demonstration TM-gas experiment was

part of the CAMForth software distribution.

[5] Toffoli, T. and Margolus, N. (1987) Cellular Automata Machines. MIT

Press Series in Scientific Computation. The MIT Press.

37




[6] Margolus, N., Toffoli, T., and Vichniac, G. (1986). Cellular-automata
supercomputers for fluid-dynamics modeling. Physical Review Letters,

56(16):1694-1696.

[7] Wolfram, S. (1986) Cellular automaton fluids 1: Basic theory. J. of
Stat. Phys., 45(3/4):471-526.

[8] Appert, C., d’Humieres D., Pot, V. and Zaleski, S. (1994) Three-
dimensional lattice gas with minimal interactions. In Transport The-
ory and Statistical Physics, 23 (1-3), pages 107-122. Proceedings of Eu-
romech 287 - Discrete Models in Fluid Dynamics, New York, M. Dekker.

Editor P. Nelson.

[9] Yepez, J. (1993) A lattice-gas with long-range interactions coupled to a
heat bath. In Ray Kapral and Anna Lawniczak, editors, Proceedings of
the Pattern Formation and Lattice-Gas Automata NATO Advanced Re-
search Workshop. Fields Institute for Research in Mathematical Sciences

and NATO Advanced Research Workshop, American Mathematical So-

ciety.

[10] Yepez, J. (1994) Lattice-gas crystallization. J. Stat. Phys., 81(1/2):255~

294.

[11] Appert, C. and Zaleski, S. (1990) Lattice gas with a liquid-gas transition.

Phys. Rev. Lett., 64:1-4.

38




A Computer Implementation

- To clearly illustrate the method of long-range lattice-gases, we have provided

a computer implementation of this method for the prototype lattice-gas ma-
chine, the CAM-8. Further information concerning the CAM-8 prototype has
been provided by Margolus [3]. The language we use to implement the model
is called “CAMForth” and was developed at the MIT Laboratory for Com-
puter Science as a superset of the Forth language provided on SUN SPARC-
stations. Local computation on the CAM-8 parallel computer is achieved
using look-up tables stored in fast static ram chips. Since the CAM-8 data
word is 16 bits wide, a lookup table contains 64k entries. These tables are
usually created off-line and stored on disk as binary encoded files, where the
address of an individual entry is the input word, and the value of that entry
is the output word. We have provided some C language subroutines that we
use to create the look-up tables for our implementation. On the eight-module
CAM-8 prototype, a 512 x 512 two-dimensional simulation runs at almost
400 frames per second. The interface dynamics, that is, coalescence of drops,
for the type of simple liquid-gas model illustrated here, are clearly observable
in real-time on the CAM-8’s frame-buffer display or within an X-window on

the host workstation.
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A.1 Implementing a Lattice-Gas in the CAMForth
Language

The following is a simple example of a long-range lattice-gas implemented
in the CAMForth language. This is an Appert-type minimal lattice-gas [11]
with an interaction range of 8. It is implemented here with periodic bound-
ary conditions in two dimensions on the triangular lattice. The example code
given below uses a 512 by 512 lattice size. We use a thomboidal mapping
of the triangular lattice onto the square lattice by using lattice directions:
+#, +¢, and (¢ + 9). Therefore, on the CAM-8’s frame-buffer display,
the representation of the lattice-gas on screen is sheared. Although it is
possible to avoid this, for simplicity of coding, I have presented this exam-
ple which is the most direct memory mapping. Our implementation uses a
single messenger bit, or “photon”, for each particle momentum state. There-
fore, our implementation uses a total of 12 bits of local site data: 6 particle
momentum states plus 6 photon states. Since we use six photon states the
implementation actually does simultaneous updating of all lattice partitions.

All the dynamics are encoded into two 16-bit look-up tables. After the
particle bits are kicked, the first look-up table, Irlg.emit.lut, actually performs
two functions: (1) it does the local collisions; and (2) it then emits photons
that are to be used in the long-range interaction step. After the photon bits
are kicked, the second look-up table, Irlg.absorb.lut, performs local momen-

tum changes by using the kicked photons, and in this way locally computes
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the long-range interaction. Any interaction range can be chosen, and in our
code given below is set in the constant r. If a negative interaction range is
set, the model still runs, however the interaction will be repulsive instead
of being attractive. Therefore, a kind of parity operation with respect to
the interaction range causes a conjugation of the interaction operation that

results in flipping the polarity of the interparticle force.
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\ skkkskkskkkxxx INITIALIZATION, SITE DATA, AND DATA MOVEMENT

new-experiment 512 by 512 space

0 0==p0 1 == pl 2 2==p2 3 3==p3 4 4==rp4 5 5 ==
6 6==20 7 7 ==2z1 8 8==22 9 9 ==23 10 10 == 24 11 11 ==
: p-kicks kick pO field -1 x Oy

pl field 0 x -1y

p2 field 1 x -1y

p3 field 1 x Oy

p4 field 0 x 1y

p5 field -1 x 1y
8 comstant T
r negate constant -r
. z-kicks kick 20 field -rx Oy

zl field 0 x —xr ¥y

z2 field rx -ry

z3 field rx Oy

z4 field 0x ry

25 field -r x ry
\ skkkxkkkxskx* PREPARE LOOK-UP TABLES AND DEFINE STEP
create-lut  collision.tab "" lrlg.emit.lut collision.tab load-buffer
create-lut interaction.tab "" lrlg.absorb.lut interaction.tab load-buffer

: prepare-tables
lut-data collision.tab switch-luts
lut-data interaction.tab switch-luts
step
; this is when-starting
define-step stepx
site-src lut lut-src site
p-kicks run new-table z-kicks run new-table
end-step this is update-step

\ ssksksokkxkxkk COLORMAP, DISPLAY TABLE, AND INITIAL PATTERN

"t ]rlg.pal palette load-buffer palette>display
nn 1rlg.dtab display-table load-buffer

" 1rlg.pat file>cam xvds

show-function xvds
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This CAMForth example code, lgir. fth, loads several additional binary en-
coded files (to set up for frame-buffer visualization, data interaction through
look-up table, and initial conditions) to run on the CAM-8 prototype or the
CAMS-8 simulator. These additional files are the following:

e Irlg.pal - Color palette used for display
e Irlg.dtab - Look-up table to render the density field

Irlg.pat - Initial random pattern at 30

Irlg.emit.lut - Local collisions and photon emission

Irlg.absord.lut - Long-range interaction table

A.2 Creating the Look-up Tables in the C Language

I have written a short subroutine in C language code to generate the look-
up tables for this simple example. We will use the following notation for
the number variables. The particle momentum states are n(a) = n, and
n(a) =1—n, and np(a) = n, and np(a) =1 —ng. Similarly for the photon
states, z(a) = z, and -z(a) = 1 — z, and zp(a) = z, and 2pla) =1 -z,
The number variables for the particles and photons are then coded as global
data in the C language as follows:

#define BIT(x,y) ((y>>x)%2)

#define CAM_WORD unsigned short
#define B 6

char bit [B] , bitp [B] ;
char zbit [B] , zbitp [B] ;

#define n(a) bit [(a+B)%B]
#define _n(a) (1-n(a))

#define mnp(a) bitp [(a+B)%B]
#define _np(a) (1-np(a))

#define z(a) zbit [(a+B)¥B]
v #define _z(a) (1-z(a))

#define zp(a) =zbitp [(a+B)%BI
#define _zp(a) (1-zp(a))




It is possible to express the long-range lattice-gas dynamics as a logical
function. Furthermore, it is possible to write a C language subroutine as a
direct implementation of this logical function that accepts a CAM input word
and computes the correct CAM output word returned by the subroutine.
The first look-up table, Irlg.emit.lut, is generated by calling the following C
language routine for all possible input configurations:

CAM_WORD 1rlg_emit_lut (CAM_WORD input)
{

char a, C;
CAM_WORD output=0 ;

/* FHP local collisions with z-emission */

/* Convert input CAM word to input boolean variables */
for ( a=0 ; a<B ; a++) n(a) = BIT(a, input) ;

for ( a=0 ; a<B ; a++)

{

¢ = n(a+2) * n(a+5) * _n(a+0) * _n(a+l) * _n(a+3) * _n(a+4)
- n(a+0) * n(a+3) * _n(a+l) * _n(a+2) * _n(a+4) * _n(a+5)
n(a+1) * n(a+3) * n(a+ts) * _n(a+0) * _n(a+2) * _n(a+4)

- n(a+1) * _n(a+*3) * _n(a+5) * n(a+t0) * n(a+2) * n(a+d) ;

np(a) = n(a) + C ;
}

/* z-emission */
for ( a=0 ; a<B ; a++) z(a) = np(a+B/2) * _np(a) ;

/* Convert output boolean variables to output CAM word */
for ( a=0 ; a< B ; at++) output += np(a)<<a ;
for ( a=B ; a<2*B ; a++) output += z(a)<<a ;

return output ;

}

The low six bits hold the particle states, bits 0 to 5, and the high six bits hold
the photon states, bits 6 to 11. The local collision operator contains the FHP
2-body and 3-body collisions [1]. The second look-up table, lrlg.emit. lut, is
generated by calling the following C language routine for all possible input
configurations
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CAM_WORD lrlg_absorb_lut (CAM_WORD input)
{

¥

int a ;
CAM_WORD output=0 ;
char C;

/* Convert input CAM word to input boolean variables */
for ( a=0 ; a<B ; a++) np{a) = BIT(a, imput) ;

/* Condition for outgoing photons */
for ( a=0 ; a<B ; a++) z(a) = np(atB/2) * _np(a) ;

/* Streamed incoming photons */
for ( a=B ; a<2#B ; a++) zp(a) = BIT(a, imput) ;

/* Nonlocal interactions, photon absorption */
for ( a=0 ; a<B ; at++)
{
C = zp(a+B/2) * z(a) - zp(a) * z(atB/2) ;
n(a) = np(a) + C ;
}

/* Convert output boolean variables to output CAM word */
for ( a=0 ; a<B ; a++) output += n(a)<<a ;

return output ;

We have provided the algorithm detail necessary for one to understand the
essential computational structure of a long-range lattice-gas model. The
example presented here of a liquid-gas system was coded in the CAMForth
language and the C language. Code to generate display tables and color
palettes was not presented here since that is not essential for understanding
our lattice-gas implementation and is CAM-8 speciic.
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